Научный журнал
Международный журнал экспериментального образования

ISSN 2618–7159
ИФ РИНЦ = 0,757

МЕТОДЫ СТАТИСТИЧЕСКОГО УПРАВЛЕНИЕ ПРОЦЕССАМИ И ПОВЫШЕНИЕ КАЧЕСТВА ПРОДУКЦИИ

Егоров С.Б. 1 Локтев А.А. 1 Капитанов А.В. 1 Локтев Д.А. 1 Егорова Т.П. 1
1 Московский государственный технологический университет «СТАНКИН»

При выпуске любого изделия требования к качеству (в отличие от требований к процессу производства) предопределены на этапе конструирования изделия и не могут изменяться при изготовлении изделия. Конструктор определяет основные параметры готового изделия. Эти требования практически всегда диктуются рынком – потребителем, с одной стороны, и конкурентами, с другой. Иными словами – продукт должен полностью удовлетворять пожелания потребителя и быть при этом не хуже, а, главное, дешевле, продукта конкурента. При этом с ужесточением конкуренции на рынке, происходит постоянное ужесточение требований к продукту. После определения требований к готовому изделию, конструктор назначает требования к параметрам отдельных деталей. Эти требования превращаются в поля допусков на определенные размеры. При этом конструктор исходит из предпосылки, что технологический процесс обязательно реализует назначенные им допуски, и изделие будет иметь запланированные параметры. Назначенный конструктором допуск определяется только возможными изменениями параметров изделия и очень редко учитывает возможные сложности при изготовлении детали.

После этапа конструирования необходимо разработать технологический процесс на отдельные детали. Технолог, планирующий технологический процесс, пытается подобрать оборудование и параметры процесса исходя из конструкторских требований. Жесткие допуска (назначенные в соответствии с требованиями рынка) могут не соответствовать возможностям оборудования или могут требовать применения современного прогрессивного более точного инструмента. В любом случае практически всегда появляется необходимость в приобретении нового оборудования и оснастки. Но технолог практически всегда уверен, что эти потребности в инвестициях не будут удовлетворены. Отчасти это объясняется отсутствием оборотных средств (ведь новое изделие только ставится на производство и пока не приносит денег, следовательно, финансирование изготовления этого нового изделия должно идти из денег, заработанных на других проектах или полученных от инвестора). Другой причиной может быть ограничение по стоимости изготовления изделия. Как уже было указано выше, всегда существует ограничения рынка по стоимости готового продукта. С учетом запланированной рентабельности проекта определяется возможный уровень себестоимости продукта, и, как следствие, предельный уровень затрат. Во многих случаях расчет показывает, что реализация указанных конструктором требований без серьезных инвестиций и, соответственно, без превышения запланированного уровня затрат невозможна. И в этом случае технолог вынужден искать компромисс с конструктором или «выкручиваться» из сложившейся ситуации различными методами, описание которых выходит за рамки данной статьи.

Начинается процесс реализации этой технологии. Детали изготавливаются, проходят технический контроль и, в составе изделия, отгружаются потребителю. И тут опять, возможно, возникнут сложности. Выясняется, что детали не соответствуют установленным допускам. Это может происходить на стадии технического контроля и тогда необходимые меры принимаются внутри производства. Худшим вариантом является получение рекламации от заказчика. Это означает, что несоответствие допускам проявилось у изделия в целом и привело к несоответствию параметров готового изделия согласованной спецификации.

В любом из этих «негативных» сценариев присутствует проведение соответствующих изменений в технологии, но результат зачастую аналогичен рассмотренному выше. Самое неприятное заключается при этом в том, что несоответствие полю допуска отдельных деталей или несоответствие всего изделия согласованной спецификации проявляется не всегда, а в произвольные моменты времени. Естественной реакцией руководства является ужесточение требований к техническому контроля.

И здесь производитель встает на проверенный путь – обеспечить качество выпускаемой продукции за счет 100 % проверки изготавливаемых деталей. Такой метод обеспечения качества, несомненно, имеет право на существование, но принципиально отличается от методов, применяемых ведущими мировыми кампаниями на протяжении двух-трех последних десятилетий.

Обеспечение качества за счет 100 % контроля является традиционным методом, применяемым до сих пор на многих отечественных предприятиях. При применении этого метода проблема обеспечения качества решается достаточно просто – необходимо отделить хорошие детали от плохих деталей. При этом по большому счету, неважно, где (на какой операции) и по какой причине произведен брак. Важно только вовремя определить брак. Хорошие детали попадают на сборку и отгружаются покупателю, а плохие детали подвергаются дополнительному анализу – можно ли из них сделать хорошие детали (исправимый брак) или нет (неисправимый брак).

Достаточно очевидно, что чем больше деталей производится и чем сложнее эти детали (чем больше признаков надо подвергать контролю), тем более многочисленная армия контролеров требуется для проверки этих деталей. Также очевидно, что выявленный брак надо компенсировать – детали надо доработать (если это исправимый брак) или выпустить новые детали взамен неисправимого брака. Необходимость компенсации брака приводит, с одной стороны, к увеличению производственного плана, с другой стороны, к увеличению производственных затрат. Увеличение плана не может происходить бесконечно. Если существуют резервы по производительности оборудования, то они используются для компенсации исправимого и неисправимого брака. Если же производительности процессов не хватает, то на сборку начинают попадать детали, находящиеся на границе между хорошими и бракованными. Если же и этих деталей не хватает, то производство обращается к конструктору за разрешением на выпуск продукции с отклонениями. Конструктор вынужден расширять допуски на изготавливаемые детали, на сборку попадает продукция, которая ранее была бы признана бракованной, но это позволяет решить проблему производительности. Через какое-то время качество деталей может улучшиться, и старые конструкторские допуски могут вернуться на место. Затем ситуация может опять ухудшиться и все может повториться снова.

Применение методов 100 % контроля существенно увеличивает производственные затраты. Как уже было показано выше, если решается только задача определения брака, а не предотвращения его получения, то затраты существенно увеличиваются за счет компенсации брака. Но, кроме этой статьи затрат, себестоимость детали существенно увеличивается за счет затрат на измерение деталей. Необходимость тотальной проверки изделий вызвана тем, что технологический процесс, как правило, не всегда производит бракованную продукцию. Ситуацию, когда процесс производит только бракованную продукцию, мы рассматривать не будем. Это связано либо с неправильным назначением допусков, либо с полной непригодностью процесса для выпуска данных изделий. Такие ситуации встречаются достаточно редко. В остальных случаях определенную часть времени процесс производит годную продукцию, затем бракованную, затем опять годную, затем на границе брака и так далее. Система контроля качества действует в каждый момент времени по-разному, либо принимая продукцию, либо направляя её на доработку, либо обращаясь к конструктору за разрешением.

При таком традиционном подходе менеджмент предприятия вынужден постоянно принимать решения, связанные с необходимость реагировать на отсутствие годных деталей и нести дополнительные затраты, иногда существенные, на контроль изделий и восполнение брака.

Современная система качества направлена не на предотвращение попадания на сборку деталей с отклонениями, а на создание такого процесса, который производил бы детали без отклонений. На самом деле, если процесс в определенные промежутки времени производит годные детали, потом начинает производить детали с отклонениями, потом опять годные и такой переход происходит неоднократно, значит, существуют какие-то причины, заставляющие процесс поступать таким образом. Отсюда можно сделать вывод, что если найти и устранить эти причины, то процесс всегда будет давать годную продукцию.

Такой, современный, подход принципиально отличается от рассмотренного выше традиционного подхода к обеспечению качества за счет 100 % контроля изделий. Он также требует нового отношения менеджмента предприятия и производства к вопросам обеспечению качества. Для реализации этого подхода надо собрать в течение определенного времени данные о параметрах продукции, проанализировать их, найти источники изменений и устранить их. Затем поддерживать процесс в этом состоянии, периодически контролируя параметры изделий. Если процесс остается в устойчивом состоянии, то можно быть уверенным, что на сборку будут попадать только годные детали. Решение проблемы качества изделий будет сопровождаться значительным увеличением прибыли за счет сокращения затрат на стопроцентный технический контроль, доработку исправимого брака и изготовление дополнительных деталей взамен неисправимого брака. В то же время, внедрение нового метода потребует определенных затрат, иногда значительных, которые достаточно быстро компенсируются увеличением прибыли.

Реализовать анализ имеющихся проблем, влияющих на качество изделий, можно с помощью методов математической статистики. И в этом случае говорят о применении статистического управления процессами.

Реализация системы статистического управления процессами происходит в несколько этапов.

В основе всего статистического управления процессами лежит анализ и интерпретация исходных данных, полученных от различных источников. Если оцениваются геометрические параметры изделия, то исходные данные получаются от различных средств измерения. Также могут использоваться дискретные признаки, имеющие два состояния (например, наличие или отсутствие дефекта).

Поэтому сначала определяют набор признаков, по которым контролируется годность детали. Этими признаками являются размеры и параметры детали с определенными допусками. В зависимости от роли, которую выполняют контролируемые признаки в обеспечении функций готового изделия, они могут разделяться на критические, очень значимые, значимые и малозначимые. В зависимости от вида признака могут быть сформулированы разные требования к стабильности его реализации.

При изготовлении изделия различные признаки (параметры качества) формируются на различных стадиях технологического процесса. Поэтому на втором этапе реализации системы статистического управления процессами надо определить, где, как и когда будут производиться измерения выбранных признаков. Под словом «где» надо понимать и операцию технологического процесса, и организацию места измерения. «Как» подразумевает назначение необходимых средств измерения (об этом чуть далее) и реализацию самого процесса измерения. «Когда» в данном случае касается, в первую очередь, определения объема выборки деталей для измерения и периодичности измерения данной выборки.

При выборе места измерения и средств измерения обязательно надо учитывать необходимость обеспечения достоверности данных, передаваемых в систему статистического анализа. Достоверность данных связана с двумя основными факторами – однозначностью получаемых данных и независимостью передачи данных от субъективных факторов. Первый фактор связан с применением определенных средств измерения. На сегодняшний день применение цифровых средств измерения является практическим требованием при создании системы статистического управления процессами. Действительно, трудно говорить о достоверности данных при считывании информации с нониуса обычного средства измерения, поскольку каждый оператор видит немного другие значения и это ставит под сомнение однозначность получаемых данных. Второй фактор также связан с применением цифровых средств измерения и требует прямой связи средства измерения с системой фиксации передаваемых значений. При вмешательстве человеческого фактора в этот процесс (оператор считывает показания со средства измерения и затем вручную заносит их в систему фиксации значений) возникает опасность преднамеренного или случайного искажения данных.

Заканчивая краткое описание этого этапа создания системы управления процессами, отметим, что для дальнейшего анализа управляемости процесса и для отражения текущей статистики передаваемые данные должны сопровождаться всем набором информации об измеряемом изделии и показателях процесса, при которых это изделие было изготовлено. Только в этом случае можно эффективно провести соответствующий анализ возникающих особых причин.

После определения признаков и методов их измерения, необходимо убедиться в том, что применяемые средства измерения позволяют объективно оценивать качество выбранных признаков. Иными словами, средство измерения должно быть пригодно для измерения данной величины. При этом речь идет не о физической пригодности (например, о невозможности измерить параметры шероховатости с помощью средств измерения линейных размеров), а о соответствии максимальной погрешности и неопределённости измерения необходимой точности измерения, связанной с полем допуска измеряемого параметра. Существуют различные нормы, определяющие соотношение между полем допуска измеряемого признака и максимально допустимой погрешностью средств измерения. Это всегда является первым этапом определения пригодности средства измерения. Если максимально допустимая погрешность средства измерения превышает 30 % (это требование ГОСТа) поля допуска измеряемого признака, то практически во всех случаях средство измерения будет признано непригодным. Кроме того, разрешение измерительной системы не должно превышать 5 % поля допуска измеряемого признака. Если эти два требования выполнены, то производят проверку пригодности системы измерения в реальных условиях измерения с участием реальных контролеров. Для оценки пригодности средств измерения на практике применяются различные методы. Определяются индексы пригодности Cg и Cgk, показатели G R&R (сходимость и воспроизводимость), а в некоторых случаях и другие показатели пригодности средств измерения. Весь комплекс оценки средств измерения нормируется и относится к области статистических методов. В европейской автомобильной промышленности применяется стандарт VDA 5, а американская автомобильная промышленности применяет комплекс норм, носящих название MSA (Measuring System Analysis – анализ измерительных систем). Совсем недавно появился стандарт ИСО, регламентирующий проверку пригодности средств измерения – ISO 22514-7:2012.

После того, как подобраны и определены оцениваемые признаки, проверена пригодность соответствующих средств измерения, переходят к реализации следующего этапа создания системы управления процессами – проверяют пригодность оборудования к изготовлению деталей изделий определенной точности.

Для этого на применяемом оборудовании обрабатывают сначала одну деталь. По результатам измерения производят соответствующие коррекции для получения признаков в середине заданного поля допуска. Затем обрабатывают последовательно пять деталей, производят полный замер выбранных признаков и оценивают разброс результатов. На этом уровне можно провести необходимые коррекции. Например, если обработка пяти деталей выявит тренд изменения размера из-за износа инструмента, то можно предусмотреть соответствующие средства программной или аппаратной компенсации станка для устранения этого тренда. И затем на станке обрабатывается пятьдесят деталей. По результатам этой обработки можно определить краткосрочные индексы воспроизводимости. Поскольку выборка мала, международные стандарты устанавливают достаточно высокие требования к этому параметру. Если эти требования выполнены, то можно говорить о том, что данное оборудование пригодно для реализации требуемых полей допусков обрабатываемого изделия.

Таким образом, проверив пригодность обрабатывающего оборудования и пригодность применяемых средств измерения, мы можем переходить непосредственно к реализации управления процессом.

Комплексное решение

Может возникнуть ощущение, что реализация статистического управления процессами требует значительных затрат, как умственных, так и материальных. На самом деле это не так. С помощью квалифицированных консультантов реализация системы статистического управления процессами может быть осуществлена в сжатые сроки с оптимальными вложениями.

Для этого нужно выполнить всего два базовых условия – оснастить производство современными средствами измерения, позволяющими реализовать надежное получение и передачу данных процесса, и реализовать саму систему управления. Это можно сделать на примере, одного их мировых лидеров в области разработки программных средств для реализации статистического управления производством – фирмы Q-DAS (Германия).

На первом уровне осуществляется сбор данных с помощью различных средств измерения, пригодных для измерения рассматриваемых величин и создающих значения параметров процесса в достаточном объеме и с достаточным уровнем достоверности. Для связи средств измерения с системами оценки параметров процесса и для получения данных в нужном формате применяются специализированные программные продукты (procellа My.SPC и O-QIS). Отметим, что созданные фирмой Q-DAS форматы данных поддерживаются практически всеми поставщиками измерительных систем.

На втором уровне полученные данные подвергаются первичной оценке с помощью этих же программных продуктов. Результатом оценки являются параметры (показатели) процесса – ход процесса, гистограммы, контрольные карты, индексы воспроизводимости и пригодности и т.д. Эти результаты оценки могут быть представлены в различной форме в зависимости от получателя этих результатов.

На третьем этапе данные передаются в центральную базу данных.

На четвертом этапе при необходимости производится более глубокий анализ полученных данных. С помощью программного продукта solara.MP реализуется анализ пригодности средств измерения. Программный продукт qs-STAT предназначен для получения практически любых статистических оценок процесса, а программный продукт destra позволяет с применением статистических методов (например, регрессионного и вариационного анализа) оптимизировать изучаемый процесс.

На пятом уровне происходит составление отчетов по проведенным оценкам. Формы и наполнение отчетов можно изменять в зависимости от адресата получения отчета.

Наконец, шестой уровень обеспечивает архивацию полученных данных для дальнейшего хранения и проведения долгосрочного анализа.

Данные результаты получены в рамках прикладного научного исследования проводимого при финансовой поддержке Министерства образования РФ в рамках соглашения № 14.574.21.0127 от 28 ноября 2014 г. Уникальный идентификатор проекта RFMEFI57414X0127.


Библиографическая ссылка

Егоров С.Б., Локтев А.А., Капитанов А.В., Локтев Д.А., Егорова Т.П. МЕТОДЫ СТАТИСТИЧЕСКОГО УПРАВЛЕНИЕ ПРОЦЕССАМИ И ПОВЫШЕНИЕ КАЧЕСТВА ПРОДУКЦИИ // Международный журнал экспериментального образования. – 2016. – № 11-1. – С. 98-102;
URL: http://www.expeducation.ru/ru/article/view?id=10713 (дата обращения: 07.05.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074